Nitsche finite element method for parabolic problems

نویسندگان

  • Bernd Heinrich
  • Beate Jung
چکیده

This paper deals with a method for the numerical solution of parabolic initialboundary value problems in two-dimensional polygonal domains Ω which are allowed to be non-convex. The Nitsche finite element method (as a mortar method) is applied for the discretization in space, i.e. non-matching meshes are used. For the discretization in time, the backward Euler method is employed. The rate of convergence in some H1-like norm and in the L2-norm is proved for the semi-discrete as well as for the fully discrete problem. In order to improve the accuracy of the method in presence of singularities arising in case of non-convex domains, meshes with local grading near the reentrant corner are employed for the Nitsche finite element method. Numerical results illustrate the approach and confirm the theoretically expected convergence rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Nitsche’s Method for a Transport Problem in Two-phase Incompressible Flows

Abstract. We consider a parabolic interface problem which models the transport of a dissolved species in two-phase incompressible flow problems. Due to the so-called Henry interface condition the solution is discontinuous across the interface. We use an extended finite element space combined with a method due to Nitsche for the spatial discretization of this problem and derive optimal discretiz...

متن کامل

A new positive definite semi-discrete mixed finite element solution for parabolic equations

In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations.  Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...

متن کامل

Analysis of a Nitsche XFEM-DG Discretization for a Class of Two-Phase Mass Transport Problems

We consider a standard model for mass transport across an evolving interface. The solution has to satisfy a jump condition across an evolving interface. We present and analyze a finite element discretization method for this mass transport problem. This method is based on a space-time approach in which a discontinuous Galerkin (DG) technique is combined with an extended finite element method (XF...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints

This paper is the second part of our work on a priori error analysis for finite element discretizations of parabolic optimal control problems. In the first part [18] problems without control constraints were considered. In this paper we derive a priori error estimates for space-time finite element discretizations of parabolic optimal control problems with pointwise inequality constraints on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007